实验报告
学生:史明洋     学号: 241002303      院系:计算机类24-3    批阅时间: 2025-6-02 14:31

批阅完成
最后得分:40

实验目的和仪器

5分

实验原理

10分

操作步骤

10分

数据处理

8分
测量次数 θ1 度 θ1 分 θ1 度 θ1 分 θ2 度 θ2 分 θ2 度 θ2 分
1                
2                
3                
测量次数 θ=12【(θ2 -θ1 )+(θ2 -θ1 )】度 θ=12【(θ2 -θ1 )+(θ2 -θ1 )】分 α =12 θ度 α =12 θ分
1        
2        
3        
平均值        
table 4 12 184 13 124 6 304 11 5 40 185 35 125 36 305 89 4 20 184 16 124 14 304 16 119 57 59 58 119 59 60 00 119 57 59 58 119 58 59 59 OKyW0IPwFN8b/kZEMVSjWnaGCWycAYS+AymR8s9yhdz6nnjhbzdv1icgWTD9fDLY17U8yoVaUGt3UCCA8na4KdEfOc5oqy2p7tKA7ilR90gxE29cXajiiK1OnnClpwBmFgxdY/K+5Qjz8oJHQeM06tAaUtC96Ef1NRmDF0qMTSE8I+3zxGmtBTGHlx6mEw9K5U/3ofP4/bbkfUAifMhWU3AZ1SsdyfMctAygJKimeGvOpF8CHJFGTv4ZKhBplsX+sEvP5BNXTvj5HorQgCJd56a66NZF5Eora/aonHoA6jrkoSSrZnCGv7gCdYBSa5ODBytcCWRWNqUgDNYweg91jGOclDdfXgQOYCC16OUEVcBXTu0kTcJj02w8KAFBKagrwUUCQokzHCpCltJaBTdGx8ns2Fpebl0bym58wAp2SIUkMbsevhP8PZ6GINykcdhdRGfWTQwBP1kU5sR1/D6Pv2BlsNjE5TMIifd+6zybxkL129ZiCW3SugujXMwCF1oablE9au5uN4SvnHc0xhzKI6G+C2Efy8/b8q1TegItP3LkNDfCYlii6S99Vtz0fWDomx8yCu1u330DAlCKSF76ESrhTwcN+CtzaoqHstlt5IX0DE03pWs44wc0H3KQc4RAVfDaRTUBFSPjUehRXGvb3trQSWpcsfcGlI2AnyCi3ZL/z2ZYanLT5vD/MRr6NBDTqcvRMSPMSVHJmlAdKeAsy/2/TWqYplG3CTMTG1N/bYGW3ttHMqsDSl2B2NXGUitmoHRhItPu7jSB4D/ofuRKVcsyVFshc02HKILwvatLL3n/ApUB6aZxvI+FfFQDJUJpyuN3iisitusgdObEe8RxwhKClJHFybTaZL+PaPGEXfJGZVi6HHuEhkJIKgB5op8opzhap/rSjIrXHhp+CCFP2EmDwOjdeVWtQngcYtGvRjU/US78eTBiDOprIAk/EZ0XIUYrR3iOedIF8Nb0T++AsPzTGL+5BKfxrViaoaKFk39rrrbrRUIPmvheb7+3eXWxY6s8nnYELS7pAXVSXgQEBHb+xF1jlJVhDgQOzb9heJH2a86IXaoCPl4mai+Qiesp6bAem4xDi57/E5b0yDSjXqwBUJ2+UD77syUybUxF45eAQ5ifLfX7xOsWvzkgOudjEbEC7edYYMIBbFJswHCbo8uzW6E2k/LJAdTBQxKEXKqBXKDS5QVLNgLMHFZ0OFdW8DLVbCcVszrtOhwn1VqHtRGrxcexj2SArs2dQyD+PTdYl7SbdAYnCJ9fuikgdQXAH1+YndRfZHW7Dq6iz+7BZOJltq5xHVZCeuo7rDxKlrIvQdY/zn+KI27rgmSNG0N+YyY/TuzF2oW/hCcH2XK6gpKShFPKaot3u5kk2n6fEwP/Jhpd8lZF1HpeJt7QXaYh9MsfF/cGqBAa1q90GZLU555WJhbV/kVWNvC5TVU7kzJRPO+udc42Fg0oeoVeNuYOUjTAfn6q/D/svXVc9dKMiyAiIwEyuG/GcPY/Hd+UyNlBO0vM9uVdaPgJSiEYIzTvD6gvXPVmj7kAESWGD5rURvwAXcnM1/IBcttMJcqU5PTH/K5k427XRVDmowo6kae5Ll5jA4r6CNVfkD4qn9Rik5Y9yvLFONEcY0chlsuea5D0nA5seUS1WYO8Ud4rp56udTVrgsm9o3QsEfqxXq/f+6GxC700oqTC2V0KtUX7x9dcEohJloNZtu0e9Ipw1S2OhJ4tKbGTTrmGXP2iyC6QjijFb3u3+NLnx3QOHPTSkKH4nXyIWc2WALZRBbQqIZU9dzn22UpovU9IUeX2W+Ldc1IQ+mcjBd0aL1C1P+plIcoNrL/t17a3CQLf7zpT6Z1bSj2N2SBFruz7DH1LLHN1zV/c4Wj9P6F+Krmc367CpQpXVumJk4aVzyiH+83VEp7oVAgT8+v04+46YGHI+hreAT+VLkS7/R13sYyUKUGfA1juwc4/bRAbgsFOAFp32ZHtGbmmRGmSsLB67mNjVE2+KC00dfkHc6/XZqahktAzZf4sv947Xftlpk2cAf9g7DRyqOF558iPy0WkBmjl5ROTL3pROBXKd7RSfA19icXEFiVDjBH5lNCjx8ztkqiaNx5iuLhLN2Sic1Yw2aW6k9rWI475cgwlNlAZ55btbvMTrlvrEmNJo1PFQ5+nilZXcwKDxFh/JD3TCl7ejihqimEOGNOpzrgkq8JmHGnQKEhYfrXRzT9QR5hQsSwP8NMZPzzAB5LspcUhlmKrR9L3GrizhRv5EkwJJioglWl5QShXqg3SOZAgDHQH5BvNfzvIigBH7Nrx5daIZD+0STQxgAaYcHWnjP+udFHNA3KW/5fiszrg6+zEYpU3WIb8/6CUjY6BlvF5EqEiUNuGPv9rq1I8TLRZpE26mt2piA4gHa8OCAnzyeK+p5ytM7PRcbH0ZwI3ZEaqp0A38CVuErW2ny+XrCZao/PRsqsZzUz46nU7t6rnP5G28DznpXFE7ArcGMiJx5tEjS0vaIHWhyF4BnNREjFvmtMUB94Seb3RcbxTWiTeNoizQoLtPYWLPtN+W1sR3FfiJS2H+fnRHGTk/hr/uL8xU//VwlOXGUmZ6cFuCTdePUXkFXnZOZwbJjrFgPPE6rEqnohw0cT3mE7TZufcitY8+J9H6p+t0VBSpQRZfLXSJ1u6ywtjpmVuwz4PIA+DXEFV8nmShSHrpXtFCwhr2DkAGHBpCo1jea61r/KgCcp/wOEvGCO51DrNXPeExAUAwmA5e4u/PamjnrxOX+PkpzqnHK996xzvYwfJPXHqSG417cQ3vEJ87bLF1blaf/CU+ebpVk3uz2zf2lTfge+TGvTCI5WQQYv2t87lpK5KIVeauUPrC7ILI3scHZLnaZUDDYLsj0Nfrt6nHhlxvs8e6Wjft9xf4UygX4TxCtMMOgoKJpr7LdCclSFcfFLafoyya9Iz7hB1BlrQMA12FteMw34Svp8mCGoxMC/kKbOCO911xlu9sDiO8AHMejinTNJX1keqLP96IKoWJ3K8BFea2eTUq8cpKfehermBIrj2IfmamDtcqace2lGLwDtFWcsN5fwh4YiF0c9Wq+F0gucyutw3+gkaj0FnbPHgpPsKX4+/Y0HCcnX7DiGTdV5pOZdkAa25Sa7NSKoY/ftObUApN/w33+S14tpZn5DqJ6WgPCWHYhQcgElq+XzpU1yBc5ffQe3TXBNLbmsk0l2NuriuhKnc6cz+kNxd3gmmR0wJ9lwUFdKKc0Wyeg0MZkqTOj01XSQ3e+x3f4NG/mQ0/8p1hNkFAsChfACFk/ePswk3eCSQKkqZAxqiuHNbzMSc8YqxqhkdSUOPU9HJL3yKc1owLCMCzF/J/JFOizUusqmG1KzyWzcbCV6oNd42r/C4tNJFyxDL7aRuiLKq3pnfPLnfuHLfsx5ne6d9c/sCNyi7zP+2TcWJOswO8LD2SPFg5upv93J5ZC4Wg0P6glHIeo5iSvTe3Qf6jHH6ZG0otSTm7UNWiaofmVHRTMnIsrQrNSQLo6E9wEaNx1EzCWNK5p8ioKP8vZHAn63oF4Zuu6ZO/B0mwdj0qYl8lcg2+csND4PMPDy4Mf7GfTuHk/rYnigiwqOZsPDA0Q1iEUtjhJ704qBknBUEPZd3oD3b2UhZF2rvpZG40fE+zUf1qQwMYcUQfzVLaq1nAJn36Muw2/Khc7OIFUC9NSaIMO/7/W9GDjklw9fBkxQhXKVe7UR8L5cvSb7FjBk6YcV4OjnTz3CdDNnh4SSQPYNxgHWgv0lKKYlUftiax2uzYY7997Bw4fQ5OysxWOMoQ48COqAS6ytrMShAa7O8RIGfLbEabCieZjJkdzhKqErDOmPGj0c0sLOoeA+f47yl3/4VSEb0TBqqmT/3OrJ6E9FMlIdtD16qN+tZdp+2u86uwuzbK8mJAmcP5F+x3zHPjoiUwxiwxrLq9MXfskX92NvG6yhAydns05AWIWkr+kQnakVeHGEuTE4i6wL41Lk5448M90NMnjcfPQCvWEFTn8Q24+EGbINvv8AvxC02dzSD+d4QCNmRywieKc/IJSN1PHvvMa+TjXLWu449QugKwxy9QzRnu6lCgfEaEmeNE2kqQa5AYuuKZh6kUyaS6+LoXTATtOahD1rL94pChoog2TQmmyxVil1+tQBqK7BqQFbV/dV5dI4Pol2tBVIhUOHRtHNtTKVVjyyfAyBE7xFZFQLxgn0rymfbxlKabGwrV0GniE2E2pTul3CvqkxLcBX7Tm8aelCWQTG0p7JgWMogaiMphbl3Lnbus4ZxdXov5azrYG2dlSxctX54Lf+ErrgsoHv/gUy8JTX7n7TN3GIPslBx7dwB1O2l/OORI1/z4I/QHCexPuREZf6owry/1GtZ29VtBPZc5r+OmVXZmgiHjAQQIrchR3/kLrOGzPU9bxGnethMrVa3vmUTK0vWLKy161c19jOn3mBvumiNCQ13wj9goMTvr8AY1HrVCTm/YeZu1ncRrN6owYav4zZlGOtAJ0OujRS5Cdo71dBf/ZD8/JcFtqqcUJsS5BRbBrF7G5x5F+YAo5D46LR8ciqyLW2c1la1IfdK3dxiw1pjXy9UXMoyT9STY7p7cqy1Nn1jMv/1e4ppH0FTdVI7esHS//0NH5Dg94x3n4UNEftWNcBKoX/T3/9uY6d+HtrWDMB/Oo/Gnb51LE+BcE6qxt1Hwm/CPSiCRIyySCoPou+1Pvhkchmu0ImL+1rVCW41iSdooLLgXfDAhIctsymHMaRvIndTHofrDrb4uvl/iA+oD1I7oVGDc5KPyVyxDpIiTqbPHxBdr8f5swi7/jOGNxE1RY7TimCcw2+l4QoNir7ZuTqkaDrNHK8LxqgSUCPfxMGRT56DLaBJ+8kwS5ijDXvYWXP/ud+HeFnBivtkW23P0C77PaSdfiPpNKTG/Xsbtcnxo9sM1Y+fyOLrw6RQ76roiR8d5RneSppNS+OKUdJyRYYVruUKDSqjdWyspmUOTX+bSaJ3uPf+plihAXBKM45HkNrLBgqaD3AqC9sRHuq7GvuG37H/l318BLfOGXbwe38G9qHkrBZEPCDHxneWEjU6RgJ9fZ+lLYGaRWa6LOgy//nA8HUcftIfqdes1FUK79Tw2IJVt8tww5+xfD8KDAe7ZEkOVK+pBJPwzY9bvYJjIyWxIeBXmMr1g0dLLw1/2zNVe8s8hpbdyALzC8pK75lR6BzP1lF9q3ORpwhsiWLlHMLCjjD3yqjzgEricrtTtjZUYt1Kq0yii6Rpjx9EJB5ns7dhddBTNxXNaN2CqDmNKocp8tb5GQ86v1TnDi+F5yYzVpd3s7cuO/4wMkgIkMUS6FAs5g4/qHBYBPqmmrj8+ALOwL5jkXUYQB1IKZzaA1W/Did6BTSPsACWliryecQG2DnFVzhTqso1b5bAYjYP8yFkUXGvxreOXWxePbz9QzDTeDADGsFYfFWc6IfItD4mlm7D+rnk5Qn2Y4Xs/Qmi84M6W5d8oIGtbBkvbqWkmRfH+cZkEQits5IQeEszxLiA8h77jHtDKs1tbgGK/xyvQZWJHLVvp8sAVW9tMQckul2ftqT8AKNi67R4wW6zr8x7U9hlD7S4CBGyTIRcNhjAiZ+ceb6iUeBr+Vd/UDDOZvUz+ldooddWq5GpGR/7xjGXcJaNpr2LSUAL0TQyldBmQwTY4BOF1RQB3eBMY3b01SLgHtvUQalAywlMs4k2xZsZYyXwshsEGMhpC1wVTc+hCREWLsmy/J/cW+nYFmpNEhTELcCHIt+iSnLcUjCRQVcLdQbBuuDXAO62grCqnkXLQv2zNDm4wmn3j8flV6h1RzuT+Hz6jvQUrIiCtKvTXQ/wfuT/JjlJySQpAkiyNZLTIkPT8ugakH46i/PUHmFPwsUU+37RehxlJ7ItvUYSh084+RdvhpBl0zC2TBtS6qvvzQ8BdzLK3NJ+JYW52dVKgKe35oRlYluijTvPyc1wM/OeX++Bfd7JeqEjqkmeyq26Ixhm/N1t18f2HXqPOtjhCLb/N6t/aUa3ddjUjB+u6nUPCyq9zftyVZQFeuSuFASL7XkZ1xOKken6PZs3L3NDmRc6V6f+vFNI5Fv+fBw5VeRFKTcr3smpYPnO/XfEb2OQYrI+bZFcuFvOfg4cE0BFWL6jW1XqSUHa12Yt3Zag3WUV6bk9T9y5HelcYepErp3+gsLqn1AkonW0nWfeip99dG1C1z4h5R+BCztuUOlxoPSb/wzCC5fHnE9xQ4vco1586BjRPDdRQjZDc+nhi1rExZ/ehG/R9uBBJGkhqqBOn/sl4AuzyWCmY9KsR63mNBi52b9rRtujtSZyhl5yAIwrlvy9+PL6AIrabXxBGpkMU39Ag/hgL1CuRCaGxTjY7jTgYPF3p87xcUwT/9q5SZVLUk36+6OmFWmOXg5xWPEZrTT+mgzSuELfXdfqMiNr3uOls80Qxsm7DBAOJ8UOEofdmdIBaIV9+Twb85qmAGHXZPf9BjNXQhqHp7zW2G3ntut64QPTKRjWYaeWMWkVhX4LpT98Vi/8xa4u8K5kaWwT8GhUQ4RJvGRXqdfn3srChQVqmIWl3a4xO0ra3Q8Yirz8TRlHxZ5Rl3GqeJ4BkoQS8T6vRJDKxUZ9VxhClTgumTHLhQEPcZv9MfBZjd32qP/aesgGirXpW0asqjOHL7oqrMWUXfp9flljRGf8rJeYJHTDG9d8kM2GDCJ0hx2DscRKIlAFx62cljMMOKJQIwvHptQG+uFd3WEyRKhKK5rgShm3ec3AAXfnqeGPB1i8N+NMJ/dmD6tDHPraOKrv6PVWZtPIeOuBZJsSAfCpl94U37BQGankjOHmW6+TVJPGc6xyD9mnkndl/ln0wtggDmk2k8IH6MenrFkm5goyqI/i5KnCkcpoSZ9Zi8PkIOIh/acDl7NNuYUo1Trb4W5W7IKI9DMb0Db0IvuBq0PfSYSgDV16pJacYKdjLllA/d8AMR/aKopkMMrhiR97uKDmIiFPkXhY27oZiiRd/XH0pVTy+gecQIPWWb72p9Eb7e0MDNTUceoRwDxkDYNkanDsqAqsfZrfzXHsjVLu7ss74mpTDsS29pSWAdFOuJVftS5U/9Qy2WFVpgX/p2yxV1IYMyyL/5dbrFif+VYLJsdruX/21LTTYVZ0WsBHvjNdk9J7lMDVMLJ5CGwyWGXXF0MHpZs7dU20OPMwDnjMhgRhgg9C1ECsakliV7FRb2yq16Qgr5flskELLfqqa5hZfnmrZZ5DSZ6xTKMZ9Kkf3FF0uBzOaBTiZFM/5SdU8FSvmRhu1tCER3KXzCwpF+ssC0flvismkUJoW935Jwipr50sdCUZUJTDgQbElKJFi75Yh58uy6DH/ayZiisP7fEJbVo1dQeFxOz+vzeRizYw5OFr5pLNekjblDG0IIIOGqK3z90uc9rC4YortlAJERT07pQS/gF1g0wFVN+4uT+TQFze3RAOWE3HtZ6zPTPzAClX0qRUKNhLKceTmSSCMOSrNVwKMZ/8t3vGvUrfLZkyx8MFCXVaVtvHN1QLh0b7OMHah+Rkih8jg6RJ550ogcKxKnwIIvtf8X8rmPcJKoYYhCaqWxk//hGykcQRu+qeIOTAzBopO/3SlSiM/VBDsYr/hVve+CsLW86uyxZbvC9nj4s27zmO5NQYuwORQQ8xyymLL8x3AjIRyOGgmwa4FlwjLRuaXcpiB++3s3+TXaKv27wfnO3SbidBWwoldtYIqs/+l6BwpgZQdH7RxOzmCUF/P2vOjmopn7O2hu7Ei/lyoM+EVE49rBKFzJ3p2rk7tXsC80oh+xpE/zPFtdH9/nR31B1d5T4oKHxxFGM0+aUcDMBlrNZPa39Xixi1EbpXztjlt9zNi2kKcjhR7Gcn7GGf4v2YmUcjMZ2amGsTWRraq/6fegOcaeLD90bCmUApcXLXvNJVIaY/dZ+m2ADzxzTkm5NY1DPYt3e3Dps1wGjVs0nFPXk+44E60iOfMUIVr/T45omInFo/MzPg/BEZKA3tyAUbhdPe3gcIlmwshrJsKslwGvKbCgwhVDkkb//j7z61W5i8TegW0/xFkm7jHGQc1yKLDcM1aKbxeQlkgr4nfFPkghz9T1wubc+p3HngFquO6+IeiTkCA3RnGSEoTL8ymO0law5bUotdzEN5V+59xu95u4qXu5batV4J+FmmJG9tAA+MbXG0Rj6h5uj4SJJt1icrbSCwC/fqB3rVpM5A9tSp+hFQUqYFDmA2dL0iCOjL6yjAGLLHfYktKp9mNoKUJUedCiSCmWmb+KIIGeM25PF92+yXOwHDn9w9WVeXDIAI9koK6tjWvZVmmxTBMnfFyu1QltO7IK6mvohQWFG8CSSGLm6936nLj2bJSFI/1sHLLUT8hMsmKzbRJNc5uVeQlyEDEKr+G7BnJRheiDy8iAgvE3VTaTkmx/eNNOYibgP2MzV601uiYD9d0pgihJLH/lHgd6frKp1MYjfJfY35ST0KQ+pET8NDj2Sejl8Xw0RSZ8ziEN10orEw2/Ncc/oyYrtLSLhk258Yk3Daiblaee5KxlrstvLWum5Kpu2pDtxkjcpty3OuhkdC3ZKy7BDudEblBLtaIpMe55cvnneafSCy6LxxZEkoBvLDp85gFzhpnxj2umCca2o9sLrSNfB79s/rUALZXkxZ5/CLhUE0Hkk5EAHXqxctQyBiV/7kcpmM54K9tXUYWsXVkWbpp0Qa/S14SboeYqRoNnN9XuU57vlJaRNaLLs1S7h4xP7MvqGgKQjoHXJ0r8wOs60nGK8dKHH9qxxf8QIKiQlYrFO3M3HRfwA3w8v586g5ZnKO86QZLq8oho1UF+sJPTjZ9x/+vqjq6uhO+h3QpYnR8wRHBgdC4VicwPXZSjaWNf4ybwiKSW0vxZGJPD8iGzTeDowsMqcNM046H/CsDmyI652v6XXFVxfaDUydozWb+XIpkCQU5/3oDp5pKbOuqtUwMUT8u3dBRleoRbCGPat8LsJXcUYbrUfgUgYYk0QOK8emAQMX6vu3zmUtGPnyOgU6KJdV5HwMf00xOa0+UiboW6qnpHvZYIuzmIhgorS5eqN0lSt3MyjAgFWl01GOrzrw8ptqHxNbd7b5YRwpLZ8GW17X5CCxVFhA+2du7QL1VhGQyOdN5viSScLufDwp3Y8PPpF9CmQFoRbB9IROOoomYOAlpHIKEgQjNO6Rusn5cJVXE1bIaXGNMoYvbY7N0GKEMTph4YFnZ9MBUPBm4GnzNYhzTKFtmhSO6q5akXGlq1Q4zfMpVnI19gyKHd8i5sHKkXnR8fy9D45BcQI01hCjglUhfTsuqrDOqalwDeDH3JpcNBqnIrI8/JtYCERetjaLbWl/WvH5yvVaWxBXrYJ1iArtVJ84Vg+xteosDXWLMUKiwSILbQ3W/5AnvRjV5CCwyqsDki+92qFDVvSAkBVpuc1i9NJtUR0Vij8pcsDjhiss0HVQWngfMMIYszKm1613jj/lSnSxQ8zwhb9HE+hp8RvyHVpHu+R9w1tyKROIx7Y1YOBxo8as8sdNZ2e93clYt9Dv561X+B8B0Ov6GyxjClrQUxdVOQpwcFVN6sdRJjsh/77riCwiQYj7Uq8OxMv8VKSbn9OnfUptzpgYBR8UbfJhWXkiif/gNwF/jXGB2r8lekzDXL078Q2FEFcnqFG8ITKGwkreJ/7WrLbQkqGnLwCX4WFrrLRTTaMvj12iP2Dau/C3EMByNa13AQAbbkj8cwYDAjWdHIL1FBTwbcteeGGOzSA9OoY1ixCwsTvdfFJuo39X49WmfLYuVZJsRJPOqNjzsyQvQUCRmQTSsM/MKhHoQWDBIxyKTzOH09G8SgusAhVeOhyNn0wIFVjy/8WVfVl05LMeizWTn4J0+y+7tWnDCo9OJhIA00N6l+sSnkZyIzTR16Obi5jZB4hwvGuynFgkx7Fyp6f5nocgpdf1DJZwJHBss1+UYFriDJ005hYQaRKG1+jpoYr54fLpsVeLJ9OgWKVMXR6JgsJegcoDP8GRXcHk387sk7kmJtSa36BdDTm2YUDDa/UOCPF+LgnB+LxuAgiU4K2x8bw0Q9GDcAVFVebJP362B18ZOoD7FFoC/GcemL7+s8KBvw1d2NH6gN8rnkVhufXJV3TGsTr52OJ82P2Dttfr36I4c0YnbjxejnSTj0bGGnJQ1tcST4xN7CBlVRUU69C43lNBAEz/QP0OyWLojhQzD++a8iM1jUvIn8IbT9cHXpMfiLXrKUd9JvXbafWV3aBSQ3Klw5c+oN4Ue/o+1i7AB8jpfwg+QCD2JUec6GpsuTFiVDprzI4U1fy6cMRGk+cJnA9dQFwNXdF1vaWiOysZIo7GJ+FrarbgxQZJJmlVGtSyi3tpKeVleRiAzKX+jxfJ/LxO18pdDZIPYRMRQHRmdMmxMRDFYOJKnnx9Tb1ENJDrbUDA4/evlffS9cLnIYd8Ljvf4DrxBlJ73MViXlblaPywQ/Qb734c6vQNo1fGZV1HqDrv7DZik/sqN6HjsuQlkA30ZvMk7z7ORM8zOmlQXI2f6Ljqvf28nqhFK+ONxu7xFR9k/uVppMCrXwMuRTW09oGq9GdONmSJqQpWjFs1fwP2kdfAP+D3nEnDZmy8cKEgQcYEYwXfX5JYZ1NF8OtPUddRAUDCEX6vb8+g+am/HB9bD0RVdiAE8cqJEmuSmYLF/XaFmbI8V+G0+E2cR2XEgRaLhM6K+IoFhuSCvjzX7ZPbVn3f/qXkUYa+SWarOr2RNcH0iuSDQz6GyJ4oJERm+nsDkFrWEK6bOlHftm55K8ws814SpeXYTQm27IeRPCz2t0zECDjAPDcwmoVU2xT0xfVMX9/gLm1pooXFdgjXSxcJZ2Q/kpWauGwdoutBCnjg/JPPBD43/cI6G8XAV+nEH/zM9fdPB9OM3jfEzcIcOU90Yf2+wQxZi4xLkhGJ+vz4vuyFMFw3hD5c7bkJWAJcApxc6K8lAR1MSYQXMjZVVea7yNdFWwPf/8TnrPuO+UzYcFCQdvM80xj3ZpRbhMn8ikeMrinrVP8X+hDWW3b7UN3GwkBKVDMO2D30Q4Smh2I8kAVx+YW/+aqavoSYmuHnlzt8pJ+OsWBkX6npPtwGFiI6IL+GsGCYDCG6N/GYFvd8/0abMc/BT5wQTTzXHiuHI5IB8S3zs30hmSGVC97jgtMc52b8D+VTsJhpHYBt8Xb2KpSg/SYpTaXRj+ytOBPP6rEn5bg4k0smtZO+bkXXMZNPSsf/xzGtjJ4B3rECgshoFgjZzZuTbtzeDvsBOA4jSh+MmyMwc1plATnipUlQZj4J/MT2LrCNGMPVj7hN+oFwnTxitIQ3y3T/eZzLM4YshEY6Yw6d/6W+iURLLk+7gPukIXwy46fHw2vOFLNE2Kdta5Bw7LLfeUfvU691w5i5NdPp6oOwTBE9G6tEfs9L4VswSFhGdopnNl+r7zuglv2CWCpys7zbPRCZ6tVG3PEtzM2pKjoHufZhzMqr9nGWEd7hrJx8MtDG6lvNsI6J/ro7TRTd7wLTrOvI1VeetH4jec15VZZ3SwCWn97niAykvrKyienW7phE/GNfr3+0Ha5IOYiImpG0Ql8+vB2g7dgLyWFcYDR2Kqx2FWdpxF36iGPYQBQ5C0Gt0C5GnBwMl0cDclcDKDJfqLgaVBs9Elv3gK/Dk7NxvsVnDHMe86exQUEmx6Fb3Ixrjt5igr5Tv59I7OdD4XlfQDBhfaFLPg4k/ueKC1D8oD17BAZieN+MMp/OWS0TZcvmBxuw+Tm7idFm0fHc5/gxNzDgkRouZs/ARL9E//QMxFnNgYKRnxiY8j21Jl90KequH+OVjMLqkIZ6VenPnEhPFsN0UXMzx2aOl7QXrXyZMxNeCzdNXPerp3zB9TZqnOjkr0364sT5KBrgsnzxzaFrEhVtMeZplvFf6UJxF7wSQBGR5CI5RilaDei2Of7eGbaXGuT2v6bR0iAqnMmsCpIfKhMWmXLTWAmBfVty0mEG9U9IYpKBQw3pzT74JbggV9H0zdq+xf+JG7f1EjawzAHFo1fzw1zLpWmBxv5/2vDsHJWTvORuoRjpB77ZeXng7s2AQCUaDhzj6R7GT+huDHFonax0YJJ+3oa8TfAn48oKkh2YAffZdw4D8/cMw6/ZSeS5tzBZ1eESr4uuRXqxlV1+vDDDn8dXiF9crkwURSSX5cz0ZFCwj/mYisdl8x/nuZLDUDlZBzB/CJTR4MfqlMdInAeDJVC6z8/+Su/FDHrxiwuu/NB/e8mutEHAKMo/2Xcudk9f3g3yEZOZ4fyfdM7bxSQhL2X3LLjLzG3v1qYTza7xsevXl22v0GSg3awbnyLCMdw9tIGCpMCaJsVMAHjZ6gsaX+bZT5KjwnbBriL3iUWPI6KeUvSAPPB2+/jvdvxODjxItqC5TkdRnjDpf3Hby+Zl+HUwdf0cXqdDsrsbYH54sCwwV+ryHUehAYzcsmSoqB+bNDjxFjcvwE7tuZM8B7IwyYltJc+SMOKCgVoH2862nCCboL0oy31CXZPCldrr9AJVn+7l2P88Y+E99hKtESx9cSvM5+zBCqjSgeDjJ735O6w4D/CaPX6IZnGlRJBJKrMKDkwxEW6dmu6zBe8iJbkekcp5PW+08RbeH3jhx8do7etcFkqCnoZEuui8oNJF90Z5j/vXGwf7u0TQqjIBGvS68oDvnvPFKG/mYOkTHSu4cYMz37DK+RRGa0Aw/NHWNhcr0ceA2bzKxvp9LANAqC5SVXEAO8mNTZfW2AmeUYlxez63r+GVpAMk/frgl/MUJHGg0rxDCNadn0SO1fhFuush00aL9EGfl1DdTZnKx4YzUUa79aFWboFgqq1miHKgBTKo7+8PSOhEdSV3JfIKPEVV1RcxNycflgQ/xaGJC9LkHpzzIwKz4YbIYaIupoepfJF6ANsWOKWX1dh8Us1Lve3UL8x8kK8RygGY2xufZsNySjfhpTU4tjagG6DYCH6zRphrlflsOkUeVjrdmlZbdnoKhiapuWkI4W5XTEs0gDmxhJB43suDlxlF4f7laVcxOqJpJua/9v9WdM1nFb6QxPsJnrorEfZ+/KJ3yzaVk3u7pma7+hljaCqqzxJ1OHlAfyo/8KbRik5ThXrMIjyF2pNVoqSQdB9TzLbsW5Fi6E/b8zMov3nbPZRU2kH4WW6nMQe5LLXSx9iCJcDmzPIAGn6te6t3gJ6MsL7JtFhmz9BQP9nZQDG6EwrRUyYUC60S4zPpB3T3SMXLhAgtkl1KOhxrTq2bMHgxSXNK5Z6cThDku07wPMReJ+vbD6xyys4KhBBHg1i0H4ZNsMWXIUGT4jqVvsH7WwKkoM9csmr3q4c9HUCn0MDZD/UnKuiTiqLC+vbtF2nC0aAqHQU/lmbRkiicZGGTutn/eiPrv1OV3qbJQmlwvSdLLVPVY464pLvqAXWLN4ZR3poXDFSj7GS78xNeEAPk5lxYYK7uGBX2/xW9MQzI7jPD0wsEZE9cJaL24DhvSz0RHy2S71ycpo/anFWgphYNSXo6HR8Q0BXHjl4ImGOinqIzHI9/QhICvsn9XbeJrJg/tfvB5wrr7beaMzzuSxElrtaeYhOyB0Se+TyfMW7QAUBO/zh0zCyQ405nKriBE1UZErtsm2XqH3sbZwFux5ONnl3rOqYpdEA64F2MpOtZHJR2+6a3Xey39uUq7cFgN2SEuJIqgmEdMCUeO7M4mmfEHlv50mCbBQLscrdibz4OsSq591z7/IXnM3auK+wWOV57ANWhBL7u939pLVkLY3gpsy0zrDmKHQWR6oak/mZnaU7gYxGLgeRvxQIMpIMep9JGi73ioZx5c/u9RFFvYOXEuJF8Pqsq6x9sIhyFsTw0DpumudPHskgAsuVKkLj/NPc4kduuldkErRb3WNTJu5QAh07ahP3xS+SC+T+ndw+N5mbILsJUJepse9axa0N7f3Ap4iP+VFboo7ELQwq8L45NvIorByIwN++tPn6xNTqLJpTi6/QDAFe/08SxIi9Q0HVdsAAvBU8MjFwextzIcb7NJWOJdvzXz7a9aWI1V5kRCQj28YLOCLxCFpuuNFBkgHpojltQ+z4GtU2CwWyt0RPb30qa4ZdbscNzZ/sWJ+QqCyTg5knphFwv8V+hA6+y7dmxgffi/K+Z1Pe+26ATN4PksJjpFg7/XHVrLrH8pkJ5caqXaAgSIyC0xGlI5wcu0rjXgp3Kne2cdeOs2oPAnARmpacH+qtKaF4mnadPq93iwvpfsvoGb/Jg/PnBmFvtiMASXpGMt4+jf+QAtp97J1f4+KeF6w+1bOzgcvfQ5nbewn6PWiqkxokMuNjFT5DyYfxLrzBHWPuPYwCcVtdWGum79YMj4jtYAc7QPOdkNykrZFF3JcdjlIokfjv//HlvLZ1LhixwJnY6EoWL3SVFa/+pR2yz3ybIbMlg0Rd6YpV2QL9u8yL1Qz0eZIv06YefVXMsYWWcPONIwciGFKnORAmfY35k2zKAB2wtPT6C0FLjm89S94jTRiba7wEHQLd4dbWZMmguLsh5tfDrYhHpyf+Vf8hq9cU19D5fYJt9vcf+buZglm3bJaQfbpkzOoY6kNy7moiBN+BR3+FcOqDNLB6GXSjKLQJndCUR2j9gug/LMVpXpVCyHaAYRG3Pl1a4FR3x5ocmnbKbVzQoFmEXW73aD1e/Y7R1Yi6uA74lzhmbw4R50NZv9nvJ1GBBC5h37TSUyvJQ3cgQGXrULlgSaWT7yDhL0EZaTqORDDQH6tGDiIouokTuQPDaiV9yq5aC+HxTTsYg8b8sy2kT/+t5QPRqbKMDgnwE/4KE62XLQ66HzBCRL5qqA1J4wFQTidbaMmOaPcfSfmc7pHAn43F76+9OU+w16QbYMzOo0WSZJ0zcdEmDV/DQjvXpDSa5t5I4Ku/3wKaUHCe2dgGIHhN6vhMSnk0coXU72PwEEl+0gWcuIeOZbvFjNv5i3DAlkqFxV9nWme5U3zRKFgKuerLKbuMrrA7El0NmvsdPJijpOE5VVjZNq+p9g+1GPhWqj6yJKQgGGvZIgQPKclfqhM4WpwufeMY4d1JCZtKahnN5KGv7Vi94OQCkHMNdekF74OJVL5BDYl2R0gzcgaNZNDhnGUK/24BCZ5fiykcfj1CzeJS/619lFNSJqNPH+naWf5GjrHbUVhhtQoDO3wnMEKBZZ0udLoIcj1QsvnH2vSGICNQOOH4u9zIB3YYRY7l1spaNAWk1Si9257tJmjRgi9g2jR4iubii5DxmP5/ECmltLCMHClEWUmvu5iw6k57xi1TjBLf2tGlmVrimIfbWPFyeo8IXV76o084q8VDAJWsQbeC2Q1zd+Cz9Aw2KH7njrU9ftSdtBuli03L8kwRQfG0W0/VT6QqLAw43biWgGhuNTzxIxPI70/hox/I6yCfn3LVWPhg18kq/E39hupD0CLBWuEUrJyyQdqG6xmNcEhGt1CX6NN6PGYoV/q6XqwFH50WHvtHViMzIvB36YYF24teU6jl54WC1poizCP+zQwQx0/Ni7T1953Xkbgy0kpPgvZocRTtmbI7ZfZjqS1XBThbP7ehfRN6XWPDPVG9nGdOrHzSG4Ul5EytmCYg/KLKrJKpqFPDQUcrjiNqaquE/e9iryAF/KhQB4nVT5BzbF2YcPrtdnF3v3J/s/ENTJwhoV8B4w/PNssmGWVGggFdyMFwTOUu/+8wU0M5JR5haDVOZz024L3AT/AhtDjGoYx501NLK6zP94lVvIVe9DAnueCh0AOGo5xyToAk9W14Ei4Dvo3/sE19YRQCXuKutX0t1d8dRYAg+wYRmVLKFHtcGiIiCOH2FiKeFmutdfl6TU5gfgWO+42D6SBJDZIFpgPIHs4pX5ehbydBlxTm8a6S8wGEu/WIyqfOCRcuTCXSzSVF7Ho0FmzhjXXRZ/oCSCLrx7z2+ldcNWUdezbkFNUViRYZWsZ8GYKmzp3Wq+fPmTiYTw2/9prEp6ZZvrdCL8utem5mBepNNszanVzEUvK4t2PXpFWfEnZUQu/d7bNtQN6ZQoAvhpA4AieHFUkGhMdfewnPCEpRiNkk540yyQbX93CB9CPMPXN3QYAdYqBF7kBs4SqKB2nXOmrm6/5yGRkvuzCfBXsaqJBxPel5DUgIv0Bu4SF/Lj0oIPjaqegw8RWddEycTM014FFYanys0KLe543W/8okY8mN+9MGvLwf2u8QXKS5b+A+FXCQ72Na7WzIuPuOikuRuN4xFuRcykuReYo21Nk6QbXC5Zeg5Hjvb3Of8y++Q75W3piNpge1scrsyj6RAX0/CLzwnP9Eu2+Ej9B/ePSzdyMrk+4lA8YDNr7rbfiZCR+6Eg/wZAeK7XVbVyppBcqaMjRadpRf6MvGdWwqzYd+5Z1vSKNFLIAA7zIza112KD7xS8HhOew2yF8XOoOrqoyWCR4iQ0O6NKgQi7nW2yOYgGBr+hDkrlgsjy0dyHpMw+h1+7XNfWrYXbISna4oM+CTHe+1upHzGMADKIinfP5qb2zV7e0xao5zh3rzBTeXTlSLmQZIlcGTNb0lB4l2+qqiMQbBosxPlSG9q2M5OSiOKEtxhx5rXRQZXd22wc1SEudHcjF1Hb05XkM/G8DShJ4XPovOOTz/3FQkF4jT9So7SAGXNpPm846S2cO7wDVWgVRVyn5gkQq0x9ru2Ho5hPwxOzYj0wHfEYhYOOIsNsbMlX0iTBRUV24BxsRAfniBLs88SsNVP2bAWUbYCiZJRos8zsfhTXkstpcW37rd/d+aJKRZws57ZYJo8dp7o6Hi8YnUzXwgFilxX++YCOjkGwpdNCH3GSjkohJ/Fn9/pB6ZQdX1ossehRv/khHNiptAUUa+R5z37e2IDuTl53C5MaIjyR6BU4q32i/4hxOqHFtNvfhdx09TLy4YCaAaeErK9b/f1FQdN3oo73+tW8kkddCXZ3PfWZqaRrm0d7BRzNJFeV4uXQvIhBMRR93zLUOejf/HBkNCIOxBSzpOq/AgapGjxPoSTzPzxKPtmyw2wt8JtoRRNdcsxRSe1NibdM9Xkt9UTHfNMEUVQyXngksbDWdx65c8BpjvEF3NXhRQRxo7sqftdZTX91mPYAIRZgo3K8saoa/PdmrlHnTog3PxDMGxjZmv2Ru4J1oVNMfnaiyDLRaxcZcukuDqFmA0tED0x8Xfgle/mijxD8nPFaGaQ3jecRFq2nfx552KsGUROl+MVRLcyCc8ZCzzUDX8wjJNSgZwysXXy5JwaXnu0kiHj7eDI689BsVE4Kuqllvi+Kpghrp4bUcgMKdiCso+O25zhka1xKUEu4UI7/PtORok3R8yHkTDSw9lrhO3LqchlgnWCixSH50zP3aGelueXmHPzR4wu7TJ5p8JKih4DyMPpGIfLf/HvPvTREq41rIF49M5NDm4i5hOCdx0fBg72b2ilMwxMTA9Jke4538v8LiHjTxbsaIVsYcSDgL5646b6TcXzVk8BSztvZcetV1+Tkt5ROsr9YpFHSIP1/1bs8Xen/13B1jwz9eEHIxvf9CH3c5zy7acBttp63ePM8jUXXJEFqhZrXyYb5Rf59TaooNvHvqd7z9GD7b51qq3ZA6+z1qB0BZH7fXwvWpXYVZoe7WdSLrSjLssZjUHm+7tJLJPQHRWjm8QWxIDfXA0R0w7BeRizLutVdvYzu7P8p+Bqyf21xaB3eYs4syI+bcHVP/e7Cdyu4/3EI1wVJ7JijbotlGE5VZcge7NFGwjUAq4wFDj93PZknUhak/0CMvcTsDdsvSx9rzc/dLwsGaS1NjVd9gfHJIRZsRpQuCD9OBVYUtTnthV4r6wRV7MzdIIqypZCKTrvdmG29QDb9L4CpEBXWOwCny28/t/UqxgxVr4vegkTFHB5kBxEvUZrce/fMTuheEJqXwGesXnUVvJYz1dU0jsAZU8fHPjvSWRU7yft+R1KtBaY8K3uyaDw2ra/s5v8n3pL+825YsuH17Kv65AwkjkftbBvTQzpES1ELABzizxjEXESLL7S7isbTtAYWyXB0KfI9u0nhoMppgA64ar+PJg8SUt16Xumob3+FeHKkIIB1S2KxQmS0U47ymL0LJapOFk3ZA4ZufVizJaW7gxnYNKvpxUunA9xY2BG4DXrvkrsRyCm1ywqQSvqJ2xnpz6Zt/hLHIVwHrdNJbpwX7sS5WY39JbgmCvz/YNjhn/JYUEPBJreI0zpTQIgGmvEDEz4V+ilD7VBFwkBKEWSlautkGqY647Xl1H/AxPazGKm+6XiXCj7VvGrQgLoMLt0vRiJCOeI+Bboimdv0h9kc5Fok/X9456HynFhFPYxcr+3aVBPTHJhc33FPDrlX3rN8BTo9ok68GErecSJUjUqcyLILamzTXk82fHcLxJLXKq+HWwyTkfoFf3lfW97sx8GYdaduu/GkO5NJPrAX9zMT67b/Vj1N+cMTMdJMMAQy3QWm09Nbsq2JHbgKE1MK+MKrr21umpBu2nhxvmfA7xPnLWn1wJn6cC3NEoHBu6sPlJj6S4lED1NuKQd5VrFexiMb4RSbjc7WAuQdHhhIFDE7AiiNkMz39l+YarcfF2PNq3Y5aCwPcpKuLaCKOkdC7r0FYPuLaYiuJzGUYMKkZs9c9c+FyqbgCjmwH+xIsFFjfKNe9+dx0hXABp0fWVGdQTqRZrbZuT2Rf7Ggeke1a6GJXuSo/Ljs1UUajU4M1Pi9NqkjC8jIaIOAmWjhLt4FdqGZKraZDXQMkieDynsUTAV09Hxh1NHCpPul6jbLDHuryVSkVoffEFFyKaggFuIQA662JmSAWqabdpvSbC8dQggY+on8hEKwk0FkbJw6FZsakJOT1P0UK654Uvodtbm2bReoW6R5mVzxewjgJkhwO3Id2ooekNMPKK7M+d1pSEFMDI5r2Y9rFEO69hGUbTAM5ehJIzAibWaotTHIslE84BKELRpwT6VBYXAbmOE0fb/iGV3x8Dt7/rH2/w/mJNA4jCPheOrYfbjdkG0cYlAOCGPjiklCHsT/rlzUUhfR+FFIWmw/plZMcXUZP3Jw8SeyOEP3sPTYtbLCDSX7ZU8h8BfZjyf2lj93kUt2YrAoCusdF707G2wCKI39Br9V31F/kEWVP48sH9+AlVX2KwxkKj32/3Xf5xxkZRcqIIIFYjId7o+KmxheCiIBIx4caJihTofzb1rdvLYVDm7Gcc+AhZhMLl7m9iAFyrYk1BhX4Yw1qC8iu+fYWP2IlgWD6wzrzw/W5a7uGVJhcbw5gppBinXIJd+VlwMuXQbV8ZaNE7SOVS5/E2ZjipBn5hF7LunNq7R3LO/OPJRKRvo7M5szu8su6i9YxodXtEZM0EOXi4YjU9zwNkv41/73EHirVv6YfXIVOWxO9ldJRznbbSFwt7deUMpBM0zzxnOVfIAwPIMpQAEKls7Gr7E9OvCfBYtmIXSkhPk98E5MlqEfk9Ypu62avVkdVcysFwIDDysWO0kAc1s0Mc4SGvGg4XMV/NHIrE3HnayrtX54Qnx6KuuT2iPooaaRRzPCPJb/pOyMUJ11VGNzECLN9vMDNPvp28/T7kFwp2FQVN17TelEFaSp6qmd9BIbek0G2ZBtHSQyTo8nW+BH44lvMbYw/ms9Q8/Yvc6aqKyDUj3MsJTeBp4Wi0YIGQgt+a2PcwBCxM8+ftv3AqkI6S2aveQl1mXvvazo41j6yePrOoW2TiPYOu4jk8V1tHOuIuHo2gR0gxwfZfWp3ddVi0Q6qLD0ouz8rtatPac7+2VPN8xOV5S5ofWjH+5oz4fjfzsmaUXsaVr0Y3YlTXEdk1yRpZnABb+rMYykIuBCMkKa5tAcTQRZDeFYexi+nIe3YbhDawxdSbWi5rHqKRjl9pE3imhl1t0KwxFLIsFkRQbjlVpgObEsKB9QiLrYFO5rXR6sex4lEN6KccJok6QzeVYyuLvGbmOADgDk+0hO3uTSQlfG6R0h0HY/JBngTrpUWL0m1tX1i64Ptnwzu7bMZL9vy0FPO3TpZpj6FIPLGfb+2zNI+VwQFFeF2T2jwa0AxizwW163XR6ZZWY/UPcFiAkSElVW5Whd3sgflzJfLLTuwfsZgti4fp+3Z80dbN2lHmul5nDyAGOOo1TPzQfDPbBhF+K74URprSTWUdgU/D2pWfvTJ1/eyUKzhDZKH/sR30BhNefGCVPWjACo7dAH9Gt46U+AzipVIwfeumS5Z1CuO2ZIcfdkF+JqWsKxfM5TQlUS1bLdJVyt1vE/pdKDzloT9HLhTTIwx11kil9tuqCQz+0Yzi8HKoSoeFyjIja+erYd8wMenmnuv6HMN3Im4X3euda0iQIjR1Qdlt9/rGJV+q/CoxLhmrEjahDUe0AcDEoAkZ4oz5dswcdxPq2cqYxW6BTVkQznBoFxqEF9e0VrRs4HrtntB8ClW3M4Rss8Ok0Bf80DuCaZ8/yWtasCHYIw0BzbNdvETTOB/c79O4R6KGwqIu04Z+QkZn0Lh2Ir8xm/B38J+kTjqI4QnlRP/UqtOOh2fW07FApwHPJWBVV0U6FyFgdz2cCsF+eNezt+QJSRzm0pMJXVZTSp8NYbwOlwQqRWypUE3PGPqNS8+ykyogYbw44evbjlnun+EwKoV4FA/I56WtzxT/nBtnz01+XjsUSTDNN30dhnEOUXsAKF2u1rbKuQeqE0nKxeFWgk5I72dsZIJyuJ2ld3fyasC4SMb0do/EocLcZ6FD+t/5LoPqHUgs1kHOByr6s4kLDJXsjmQN/LX3FVLCPB3N159LxAqtHNcjmsW/xgtdd/cnnKfnoxsIzap9FD+cQf/zTQArAr46GL+bCP/arKSjsn9Br/vtDvkr9uOtpKSgOCJ2zHmgDZziPh7/gWRIYdfNjAvYIUjEl/KPFWV4qmnVXWDihA4SVuqYRB7uu1AGG7mDAefQXKOvTCd9nW6rtk8NdlbMcjjrK8FzBfRRDM4IlC7M+vRCpSDawMzWExCJiYppz+pT3vl1CqHHPRHr6bcy36lbG7y1xzP13P8cGw9EI41fD+Kud0oetSWodkgcPYe+ApOc7fqoCmrf2pu2NvEY4KvxTkX7USst2xWvfAoDOn8WruKGzBSLyDI6ockk6ypYHVCYpnqsAbFUZE3QNlFSrBd5CppaWSz6AwfAhD7UE58Ht4KX2sgnXc26xOYFt40ur6GPTKIZ/u5w6uVagc+S29pFvQ8JDVuJiN57CT+PciMO6WeANOKg/gqTXgjb0g97dmMMbNsZbfW/9Uh8ZIfqslELNJbXmX65WyqedhE8DWzVfBdq/k9XMKZuRGpW8lGFNFrARGJ4= SjUmLgDkXyG7rkuvSNowDaxWoDsUi9HP65S2SYQ+QvKt3GW0ycGOOu6UEQ4hZFYwY2h9zdrasXiG1J77DoeNxASoMpH9oxkBp5JhMn7PdkD13mBQCKRUDvVqjuW1kotKW7i4WUC273HaeLSg/aaPJurUQFSTGFrG5Yp1bdm+snKi/JQB0fOQ0lcXmQJbvmcPKcPgBYDZ06J+j7+Wppd90lQTCJ/jFbYKe04Zb81BlUGpGctKxIY+baMGpU7veAnNNE3yvMDZbTdWPsaXQvGsJIR34I/i1BMnVSZqb2DowfnMm6DQ7pWIuvrViJDxNpdeHdlM2+Ue5Vv+dY3DU6bRPytEDqhqeOAOq/YhlFeVADs57Rfha/fAnCwhkbtGwWHHs2Wz9VHJvZ5Vusjv4z94/X/L8bdQD0TA4bbWp0yjs0Frq0KQ+4rYmA4ysU75t/J0S+H1sIIR2HxlIWPT55OQdT1t50UEHVn+D7LVZjOgI1DXGHF+iI8Ly1XdMvjAIaOf8W40aWYvSTwsva6xqNdYawDR8K3od2HHID6iRsy68rKhheiDuDZvfWbCKhGXRDHUQX+O8I9EqV3fi5lWk1IWq7hUP36N1HUt22eiPkCH90/BEYc0aOjOFDcLzREVFP2zTiDZsOs6bykRFSOLU17djLjnRjeRgGlMXtz/D47CBIR79r9wRHhkTYoIGaM7hI50s7jmI2+/NcyvzMno1xdsR40CG5auSYCqlMKiKcne50B5bhLuRoJLSz+HxxhhP6ni HLLIPGEigCS9uQcpleVWHQ== Ug6i3lldBqk495UIG3GZJaXvKD2Bg8mlxWfP8S43SkgZ9DoumYzZNiLogiaMHwZdjUgkKIpv3Zz/wsgNyrEWJJGLUof9mZbFyiVBecun56IzuvSyPJ3lK0QUOhB+nn/eT3PXaZ1BQO/SnTq7iXSbwjKeu6GJgpRY2cW48YAl9ejGYmi6/XfWhOJtV+w5IxIMWI9h3mZHGB3ZlDhz0Rw81TRhdyKPbqTHgb7KAsnE23mKBIVvZVrflQOSrw1MlW17H5p945sjRGRcf8XYIaSUI/324MQIqAzRkbTwdob73IgVFOJ8Ik3L6brSGC5hP1wcoZOuCAVZ6o5h0aCXy4pNxLqNgX453yyvVWOR/YEUPIt8NgUjwyKOSJzis67Q+SVTM2Sa3oG3X/QDocg0TRKSP5qwjxqXXj05SNZC4jeal/3ptmcCPb6KvIhusSo/Q6rowkyMYZ45AN8wtE5088h4Jat2FqpudC8E5kwnA6IsLcH0GNaEVlV+vHcOZ39Wgt543KcADyhBlVEet9/RVZgQfzWePjbV2rrvB3n7z5VsVw/MD+AEZljCaLayncKE4mjsgY6n7o49lozHieT1ElSbo0Zq+IulYLIIUxw8kK3mHJ/LRqSBvTaYR1mxxb5a3ZyPhC1cgXKFcCCTuNeCbbH6jSuOEEDvILgt6HQB+F3LDY/yGpi3qMUrxeBzUz2FoB9N+rb4vJuGEu+U0tgkbwWd6qv7KvMKyQPDimObVhDhN3ARxtvphQpZhc2sY2LKvKGD7UvFJFbNj9mX1oAW/vo9/D3uJB+7fMZnEMctgSdknV86uPNYUlQdZSNZxob6lvOhyVNm9T2/4qALkwfrtoPMvQ==
2分

a=1nni=1ai=(1)°(2)

datafill 59 59 HLLIPGEigCS9uQcpleVWHQ== y+kmBr1HLdtm9dlMfIPMxplxsaXNhRLCePMI0VBrxDmsmFmm5o4R233zseyOg2OypU+jc5TEHEp/6diZHquB8xYGT7+dUrmBWVTXIv0jCeeXFCcAyVNI27ZFgChNoW5igj64axRrbGL7M1/IaIdNz4CXciGsE00PY73GTtecN+e78Qf2TL1b8AdAvC8o7NnAX4bRYWsF2QOHl092Lk+9UHCy5iAlqruWZoWNX836vC1wD3M9gjtazxrDnEBubfDJjTJtJ+cOmFNtV0cNQLpR3kniiEnYyyTvGymJ09wq22noqDggWezpPVwqAEsWLw4szclcc7f+w+KTfDL2ptjf3xjXBK+pW6Y/m7CXO5oD6lREhuu42rzIhpWWoICym7tSBtjRFZvkv4mUyRPw401co3mzebTUVHmuSU0PHl3F4ieE5+aGpusyukbEY/5WtmrKgCTddUfROk3HwwfZnATCpKLe5D42qLZPYaDLfm/e+UNBSGov52FnljiXrvnKTrcvB2bGK2PBClOVu4YzHHJjlVLEdlCIM7L2DifHx2/Uo8Ap2D47Q159LE+1Mz2Lq7ETy0vdNUjRbq4vEGgjFM3zcHQ+3ejHFoqkrk2l4Cv0/9MV5hPMCbEu8VTgPFU9jFUfIXsoxDS74VmS3E5Un6gN/lrj/NflOtT5SutHaYojU3ZZHgmCiwCrxuFyZiuBkWv6rss28clQp3Xq7E0i4oSYvYmnpyM6Vv1nZYdnJVNz0rr1QU3gYWr2e498mNJpcSfCZpr0hjl5Xo2MtvaZfohkDQxTFqlRoYpOoxGSzJmLFkYdGundvubdPZv46GIJx76l6uornYKC8dkh5hKe8de3/lzWhq51r/hk7CGyWRVZYQ9kq4hFe+iqRb/mCanfR76b9Q5UFSpfWKBxNKm3IbxcqiGDp9YUZST7FJsw8x4AXxpCU+wOetXppkOuMawC/41RNDk0DPhZNFXfQbQsEKRRlgmAQBUJGlGS4eq/ytex17sUUFHU6VvgutTVHlxAbhW/KF59LehlpgEW18wR4qNHsQ== kbs8cUEArIzl90tKMNafbYHxVlWcZSPCSNHpyr79Ghet8cA3zN2g8pM9FKB7U4TQaxwCptcELlCLEqij9G39SnL+KuKO9adY8zD9IqZic8HGZd0xaAtW6TswGU5lqPr7QwLI7k6bdO4eE13xWhxhk3G6B50H48YzYcFoQNYnAUpX9KVcB2qk/3/MHaJNVqUgzlTmZ2hKE4uLPWXshMCwcmmMImqTohjMH3EHio6bE++xdoNpvAuT6hiyTlKY0X07IKxhvDtOt0GpkuOGzVcWEDSZ/Vkt+tKGqiQrQocVX74= dLI1xeF4c/p8IQ225Xs0GsQ4dirWNMKxHkMgwPhEqQuko5EtW7t2XeQ9+43V46ZEZApnkb0YSlG7P0SK6JgSDc1Jc9CstnXX2cJGu8F1n9dAsQ24nxSjsXD1cokd5HpvTzryMxStKaD6E/s6pWw2wUFt+sRyj3aMEfTclF8X8mI1MFsY5VRzv/+P9Ktu7qUT9lfk5MMmeIsWDe6wmffOf94B7x8ZcnRHvSwF8GVjN04KLU58lHuwxgJP4qIHU5bWF1ZcMAJHn5lmOVgNpV1WFeRHEK9IHdWOy6YPSbP8A+8VMOLifJ59COuKOp+hJy4vnGOWWWOJeYQEK1cgudWMgho1iM14c3LpFq+VBKAbJIMvAxvQxa8rgdlsC2Dx0VUsDlvTSeZYCeUgxXGF6Gs6Bw==
2分

ΔA=t0.95,3×sn=2.48s=(1) ′   ΔB=0

datafill 2 ug7tovBdpW66jhFG1gTbRVPRg71rBM5Z8HGIgDOdpwr2qATNcbXGZ2P8LbsbTysDhK4csatdOUEJy91b50lRAzUFmBOG9IleTc/53yM00upHje+Q1MfZwuIzfhaNRJahovTXIyONEb8ZPESVqqN1vic+vJ3SPF6WzL6f5EVWFIOEmVJrQWzqm2oTCBT6b1SBM3MPDAkNc2iszY9e8JImqKjvfAB7z7CxgFREM5s4c8G2g/Ho6VvwdaC64O2+GJrbG1AA+D458y1Hk3gkGi+dWc9T4HRNkwpxbql1wf1fVeK6mqcIwiK4eE6AXj/dK5ESXJ3ErDhaRS+BvNmoOoenrkFu/lHWTts1axiYkR2/BYL+SbmM13//rZ+OLZceUMriRn7DyTGESuSKkcZk3vNrg/i8ygMx7q7uWL9N7Xh2wWaetvCxRPJIw/Uel8XE4WXxmvselwtIdl9i3rn6FZcWP4FEMafEhnatfjD1BrMNvRX/ChdX+pi/JYFPy/PkeQKSYdAXmDQ86fPSPRQJQ8x4FeNfx3P/8h2tDdFrw/kdiOANP/URUeppwxtybFuqwTF+OnNKqcpPE/SL+oh970ror4W8JoCid6QIwOpZKuKSGr0gSXLUDQ376vZ2qW+w3FIkfHTKh6qC+7rHZy5jfSSZdPju9gWEaknvuXehjgo6TLIfhpcjt3okBd5ZyvJ5tlVtM51PdenLUPXXb7yZTJi7zHs2iy/sbNSM0tGP0sAd/KeQRUD5IYjQP/4n7g2PTsahOVYMf/o+5hIQ8L7YIbMtZXSriMjxaWuNKESVP9mWK7HhInTHnrHj4HauRxzAmt2fjABklnB7FIFAGzZOZDZ6Ojjo2x8Hy2ow0FZ0RSeKtiHhKp0coLoiOT1kweO8ymm6JiVMKoyQELBHEsM4637bmdTlx8dl0G0eGAC/1NMePfDziKVSuzYe+Cm4JR1ICXFS QHJp/T/wso/Pw+WNkR/CH77auSpvD8T5QWi050U0e/SfG76BIV5O8zi3p/WxwTRiHSA4lSO3Bo7u164ucgVXfCC1it9xDCK52UpmtHYFk0ecVu94viAXPJBFo3llfOa4JLuksPDsNfaaTVd1+uisUZn1v6KnThK1qeqfq+NFgfl8Bz+PaAVn5S6PaHi2xMmgn23rdx8i6dA02CVpRSGgzkUlIiI5qsAQR+IZUdHqRObgn1SNEbMpAPlGZtUcKoF4Iv9L4y1t1tp7b8NjXAm52d4LYoFckp5xTw6xVivJJPH9y5hq9vRvHSEG2aUm5gk6uLQW/cX7G/bC6nwG9WkJw4PlmUSFMSMhEx7t8gw2rlXRndtiGU4sCkTr8rlJs1KtAqBNqVkIgos1IkBHAk2vs3SefuYr1l5Umi5XiO2+Gce6/zcV/bxENbXejHBZSj4Xf8zHYF+HK2kU+wKW4XBNz9jxcz3dsCQ84MS/dj3jIQjvlrgYrYy6OUzIvOoRyOGFU491WoRBjWazt1E2W//KA4IhK/JurSf02tbFS+Mh2EbewgfzDWGX+AcSHBm5DPAHT4sY1PoTE8Rl9OdSZ7nmGfXCRemQKpX0d0VWdisyPXp0vN5N4Wmc+l9Z6irM68SlQMKcaqNy9sOzlJ/rjkbp1B7Z69kLLRsrq60H6mT1xDpJkvHtKWhc/CrcU67yHUi2h3NBeJDIY/Ut5mIhqJGhRGrM/sGR6Z2glvQQPHfPG/+qNevI8AupFn/5LqZ0u7U1pj+m71VtlsRizlq2H17s7Gd0Ym0EfoPLgkt5zuUS7Qw= kbs8cUEArIzl90tKMNafbYHxVlWcZSPCSNHpyr79Ghet8cA3zN2g8pM9FKB7U4TQaxwCptcELlCLEqij9G39SnL+KuKO9adY8zD9IqZic8HGZd0xaAtW6TswGU5lqPr7QwLI7k6bdO4eE13xWhxhk3G6B50H48YzYcFoQNYnAUrpowUGmkKX6ZxMZI++JeEah7sNxtuysN/R0pK+jc+8skERgCYZmzDXwE7VmS+LwcGwtUUDwjLZU/A0nMmWsvYa1ihHrt/A95ezGq46Bndi2A== dLI1xeF4c/p8IQ225Xs0GsQ4dirWNMKxHkMgwPhEqQuko5EtW7t2XeQ9+43V46ZEZApnkb0YSlG7P0SK6JgSDc1Jc9CstnXX2cJGu8F1n9dAsQ24nxSjsXD1cokd5HpvTzryMxStKaD6E/s6pWw2wUFt+sRyj3aMEfTclF8X8mI1MFsY5VRzv/+P9Ktu7qUT9lfk5MMmeIsWDe6wmffOf94B7x8ZcnRHvSwF8GVjN04KLU58lHuwxgJP4qIHU5bWF1ZcMAJHn5lmOVgNpV1WFeRHEK9IHdWOy6YPSbP8A+8VMOLifJ59COuKOp+hJy4vyELHpnbP7c7dZCzghf8Ypqp8cj+L1Z/jCsijW02QgUU6aCsh8GcnWMsQt5hCvyEiONav57p9JdLN+zPuCwWJ0A==
3分

α=α±ΔA=(1)°(2)′±(3)′    p=0.95

datafill 59 59 59 HLLIPGEigCS9uQcpleVWHQ== 3/Mw+DBW1iAc23yXEUNMihmv3tRZdC/ppTXkUdrwuPh8/uU3JGqJWdPMiPYoCbVhlSYAwDdopQox6h79B/yYgs7GnnGFQBybBtMlTZ/5UFU3mrpsYqbX/D2kPivnfu0Gf+cMkh2M+VoeaD+f+tEaAMyGN8DoRLd5H9IC7riif+ZZlOVba/hUW5rz5pqjseeVgxcnWLWybU1iLiiI8fF5dLWSV7rLf6aOXQ5D1k+C2lmoktmcrgAaThPFoD/moxDURAg4/NaXhtUYgaHlY8UUS76GI6L9mJLGCJYGHgMzydh9yf9k9ueinaO1VTC1yhCNrvfuAbCG2e3IWTLZXTpLLad9DqGRrZgXk2P62rnv90rp5gktKonh+vqvRCVGUiNtWeErSKxHOYeWzryonZLnMUfKuoYkeSRv/G6n02SF2iKQT7SEHMh/NN2LJuMVzrlxg00F2zZnpyP0q0HYvyL4/v4aosk0dR0QTaYmfG5GX8YSZCC11JAne9cAXmdTzyYEJZlDd5ysbFzv+WmR8B8ykG7yEXH0GwIOVBqHYHJBUja/7x9qff2d1A0KtlkNkX8c6vS5jLPp50CUP8sDwvP2gaOR71Ad4MnGZm5cY4GnKUMDzV/D6q+fkxYge/cX1Q/OUNXEDHYmIYVkXp3x/xuH/+6kkKMnIEqn9tr1xQPVbQKduWkIw3mj9tg7jUThKCpOj9fhV7mTZZUqOpsL5GMrK4mdt9GcIW5jUkmmWbgyBdu61qx0/L7r8Ho23itzCYwc87MNKzQGUGV0lrz7lqtHtd2A6hhUOi01Ouso4igDj3JOPGYWB+U70JmWYxjg+l/YrPKgHf7HgkmPmnsCU3jNso1wlKisIMSSTGtakO/+nxW579jR6j0iDdTUfvNPlTraRAGaXUJrjjECW5vsZ2AUjiXBgLPPoy958nKiJV7f/bOoFDMQgphoLKH163cG5R3ZY/L33dKT0LuTHbwVAAnGAQ== kbs8cUEArIzl90tKMNafbYHxVlWcZSPCSNHpyr79Ghet8cA3zN2g8pM9FKB7U4TQaxwCptcELlCLEqij9G39SnL+KuKO9adY8zD9IqZic8HGZd0xaAtW6TswGU5lqPr7QwLI7k6bdO4eE13xWhxhk3G6B50H48YzYcFoQNYnAUqpKYBmeIwohiORhQdf8+YSlSGF3WJxQZSP4YPwhpebR21/WKa04SxxcI5nnMExCDamfr+tUR/fclCBLsPz3Et5 dLI1xeF4c/p8IQ225Xs0GsQ4dirWNMKxHkMgwPhEqQuko5EtW7t2XeQ9+43V46ZEZApnkb0YSlG7P0SK6JgSDc1Jc9CstnXX2cJGu8F1n9dAsQ24nxSjsXD1cokd5HpvTzryMxStKaD6E/s6pWw2wUFt+sRyj3aMEfTclF8X8mI1MFsY5VRzv/+P9Ktu7qUT9lfk5MMmeIsWDe6wmffOf94B7x8ZcnRHvSwF8GVjN04KLU58lHuwxgJP4qIHU5bWF1ZcMAJHn5lmOVgNpV1WFeRHEK9IHdWOy6YPSbP8A+8VMOLifJ59COuKOp+hJy4vyELHpnbP7c7dZCzghf8Ypqp8cj+L1Z/jCsijW02QgUUKrG8E7ha0I9rKhwbslTmM+S5u7jsWm426E0syxiXZc5Onc1SJ89PXX/1ng86G4ABsyi7/d0G1I967mOmVfQr5

思考题

5分

1.在调整望远镜时为什么要将平面镜放于垂直于平台两螺钉连线的位置?

5分

2.调节里远镜和仪器中心转轴垂直时为什么要采用“各半调节”方法?只调6或只调12能否达到目的?为什么?

原始数据